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SPREADING OUT OF A VISCOUS LIQUID OVER A HORIZONTAL SURFACE 

G. I. Shapiro UDC 532.62 

The spreading out of a viscous liquid over the surface of a solid body plays an impor- 
tant role in a number of practical problems, for example, in the formation of coatings of sol- 
id bodies, in the motion of gas-- liquid mixtures and emulsions in capillaries, and in other 
cases [i]. The motion of a thin film of a viscous liquid over a horizontal surface is caused 
by the action of gravity and surface tension forces and has much in common with the motion 
of thin films over an inclined surface, which has been intensively studied for a number of 
years [2-4]~ The transition from an inclined plane to a horizontal one is not trivial, i.e., 
it does not reduce to the substitution into the final formulas of a slope angle equal to 
zero. The point is that motion over a horizontal surface is described even in the crudest 
approximation by a differential equation of higher order. 

The problem of the spreading out of a viscous liquid over a horizontal surface has been 
discussed in the two-dimensional formulation in [5], in which the approximate nonlinear equa- 
tion for the layer thickness h is obtained as a function of the coordinate x and the time t: 

ht = (g/3w)(h~hx)x" (1) 

Here ~ i s  the  k i n e m a t i c  v i s c o s i t y  c o e f f i c i e n t  and g i s  the  g r a v i t a t i o n a l  a c c e l e r a t i o n .  Un- 
f o r t u n a t e l y ,  the  e f f e c t  of s u r f a c e  t e n s i o n  has  i n  f a c t  n o t  been t aken  i n t o  a c c o u n t  in  [5 ] .  

In the  o p p o s i t e  l i m i t i n g  c a s e ,  in  which one can n e g l e c t  the  f o r c e  of  g r a v i t y  in  c o m p a r i -  
son wi th  the  s u r f a c e  t e n s i o n  f o r c e ,  the  e q u a t i o n  f o r  h (x ,  t )  has  been o b t a i n e d  i n  [6] ( a l s o  
only in the two-dimensional formulation): 

h t + (~/3pv)(h~hxxx) x - -  O, (2) 

where ~ is the surface tension coefficient and p is the density of the liquid. 

The three-dimensional problem of the motion of a viscous incompressible liquid over a 
horizontal plane is discussed in this paper with account taken of the gravity and surface 
tension forces. The slope of the free surface is assumed to be small, and the motion is as- 
sumed to be sufficiently slow (creeping) so that one can neglect the inertial forces in com- 
parison with the viscous ones. As will be shown, the Reynolds number does not necessarily 
have to be small. No restrictions are imposed on variations of the layer thickness h(x, y, t); 
in particular, h can vanish, as occurs upon the spreading out of a drop. 
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We shall utilize the Navier-- Stokes equations with the following boundary conditions 
for the description of the dynamics of the liquid. There is adhesion on the surface of the 
solid body: 

ul~=o = O, wl~=o = O. (3)  

Here u is the horizontal velocity vector, w is the vertical component of the velocity, and z 
is the vertical coordinate. 

On the free surface continuity of the normal ann and tangential ant stresses is the 
boundary condition [7]: 

~ n n ] z = h = - - P a - } - ~  [t+(Vh)~] a/z ' 

where Pa is the atmospheric pressure (we shall assume that Pa = const), o is the surface ten- 
sion coefficient, and V and A are the two-dimensional (in the horizontal x, y plane) Hamilton- 
Jan and Laplacian operators. It is convenient to combine the kinematic boundary condition 
with the continuity equation and write it in the form 

h 

ht + V y udz 
0 

=0. (5) 

Let the characteristic thickness of the layer be equal to H, and let the characteristic 
horizontal dimension be L. We shall select U = gH3/~L, which is determined from the condi- 
tion that the characteristic values of the horizontal gradient of the hydrostatic pressure 
and the viscosity forces balance each other, as the scale of the horizontal velocity. Let us 
introduce dimensionless variables by the formulas: 

~L s 
u = Uu ' ,  w = ~zUw', x L x ' ,  g g , 

z = H ~ ,  h = H~I, t = Tx,  p = Pa %" 9g(h - -  z) + P p ' ,  

where 

~x = H / L ;  P = pgH; T = L / U  =- ~L'Z/gH a, 

the hydrostatic component pg(h -- z) of the pressure p is separated out as a separate term 

for convenience. 

In these variables the Navier-- Stokes equations, the incompressibility condition, and 
Eq. (5) are written in the form 

rt p 

' ' w u~) - - V ~ - -  YP' + u ~  § ~AU';  (6)  Fr (u~ ~ (u'v) u' ~ = 
o i ! p t o v 

~z Fr- (wx +.(u'V) w' + w w~) = - -  p~ ~ a - w ~  + ~Aw';  (7) 
v 

AU' § w~ = O; (8)  

~ + V ~u'd~ = 0, (9) 
0 

where Fr 2 = gH~/~2L a = Ua/gH is the square of the Froude number. For brevity's sake the di- 
mensionless operators V and A are denoted by the same symbols as are the dimensional opera- 

tors. 

Let us introduce an equation which describes the evolution of the free surface n(x', y', 
T) for small values of ~2 and sufficiently slow motions of the liquid. It is evident from 
Eqs. (6) and (7) that in the problem under discussion the smallness of the Froude nnmber Fr 
and not the Reynolds number Re = UH/~ = gH~/~ = L is the "slowness" condition of the motion, 
i.e., smallness of the inertial terms in comparison with the viscous ones. It is easy to 
convince oneself that the Reynolds number is related to the Froude number by the relationship 
Fr 2 = ~ Re, so that the condition Fr 2 << I can be satisfied for Re >>i only if ~= << i. Con- 
sequently, it is convenient in the asymptotic analysis to make, use of the expansion of the 
quantities u', w', and p' into series in the two independent small parameters ~2 and Fr=: 
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. ~ u ~  Fr ~n. (i0) 

A c l o s e d  e q u a t i o n  f o r  ~ i s  o b t a i n e d  as f o l l o w s .  We s u b s t i t u t e  the  e x p a n s i o n  (10) i n t o  
Eqs. ( 6 ) - ( 8 )  and the  boundary  c o n d i t i o n s  and s o l v e  t h i s  p roblem,  assuming ~ ( x ' ,  y ' ,  T) to  be 
s p e c i f i e d .  In  each  a p p r o x i m a t i o n  i n  ~2 and Fr 2 the  s o l u t i o n  r e d u c e s  to  t he  i n t e g r a t i o n  of  
known f u n c t i o n s  v e r t i c a l l y  and can be pe r fo rmed  in  f i n a l  form. The s o l u t i o n  found u '  = U'oo 
+ F r 2 u ~  + ~2u~o + o . . ,  which  i s  f u n c t i o n a l l y  dependen t  on ~, i s  t h e n  s u b s t i t u t e d  i n t o  Eq. 
(9 ) .  I t  i s  i n t e r e s t i n g  t h a t  w i t h  t h i s  c h o i c e  i t  i s  n o t  n e c e s s a r y  t o  decompose the  q u a n t i t y  
n i n t o  a s e r i e s  in  s m a l l  p a r a m e t e r s .  This  n o t  o n l y  s i m p l i f i e s  the  c a l c u l a t i o n s  bu t  a l s o  
p e r m i t s  n o t  impos ing  any a d d i t i o n a l  r e s t r i c t i o n s  on the  a m p l i t u d e  o f  the  v a r i a t i o n s  o f  n. 

We note that in thin liquid films the relation a2 <~ Fr=<< i is often satisfied. For 
example, for water with H = 0.3 mm, L = i cm, and ~ = I0 -2 cm=/sec we obtain a~ = 9 • i0 -~ 
and Fr = = 0.2 >> a=. Therefore in the asymptotic expansion (i0) it is necessary first of 
all to take account of corrections in Fr =, one can completely ignore terms ~ ~= in the lowest 
approximations (which are of main interest). The boundary conditions (4) simplify signifi- 
cantly and take the form 

p 

u~l~_= ~ = 0, P'k=~ = -- W e A ~ ,  (ii) 

in the dimensionless variables, where We = o/pgL = is the Weber number. 

In the zeroth approximation in a 2 and Fr 2 the horizontal velocity vector u~o found from 
(3), (6), (7), and (Ii) is of the form 

Uo ~ \~ .~  _ .~ ] 01 _ WeA~l)" ( 1 2 )  

Substituting this expression into (9), we obtain a nonlinear equation for n(x', y', T) of 
the zeroth approximation.* We write it immediately in dimensional variables: 

ht --  ~ V  (hWh) § V (h3vAh) = 0. (13) 

After q(x', y', T) is found from the solution of Eq. (13), we find the horizontal velocity 
by formula (12) and the vertical velocity from the incompressibility condition (8). 

In the first approximation in Fr 2 the equation for n appears more cumbersome; therefore 
we write it out for the case in which one can neglect the term with We: 

' v  o {47 o. ~-- ~ (nwn) + Fr~V t~ ~V~ (Vn) 2 + ~ n A~Vn , ~05 + ~ = 

Let us analyze in detail the equation of the zeroth approximation (13). In the two limiting 
cases this equation changes into the well-known equations. When q = 0 (surface tension is 
absent) and 3/3 y = O, we obtain Eq. (i). When g = 0 (there is no gravity) and 3/~y = 0, we 
obtain Eq. (2). 

When q = O, Eq. (13) belongs to the class of nonlinear parabolic equations, numerous 
self-similar solutions of which have been found in [9, i0] in connection with problems of the 
theory of thermal waves and filter theory. In particular, if when an axisymmetric liquid 
drop spreads out there is an inflow of liquid at its center with intensity Q and the condi- 
tion n = 0 is satisfied at infinity, the self-similar solution of the contracted Eq. (13) 
has the form indicated in [i0] and is different from zero only in the finite region 0 < r < 
R(t). The radius of the drop R increases with time according to the law 

R( t )  = AQ3/S(g/v)l/stl/~. (14) 

Numer ica l  i n t e g r a t i o n  g i v e s  the  v a l u e  0 .62 f o r  the  c o e f f i c i e n t  A. Formula  (14) i s  i n  a g r e e -  
ment ( t o  w i t h i n  an a c c u r a c y  of  some d i f f e r e n c e  i n  a n u m e r i c a l  c o e f f i c i e n t )  w i t h  the  e x p e r i -  

*For the particular case 3/~y = 0 this equation is obtained by a different method in [8], 
which a reviewer has kindly pointed out to the author. 
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mental results of [ii], in which an axisymmetric glycerin spot spread out on glass. The 
theoretical dependence (14) with A = 0.3 is denoted in Fig. i by the numeral "l", and 
the experimental data of [ii] with Q = 0.91 • 0.04 cm3/sec and v = 6.2 cm2/sec are denoted 
by the numeral "2". Estimates show that under the conditions of these tests We << i, i.e., 
the effect of surface tension is actually small. If there is no inflow of liquid, the self- 
similar solution of Eq. (13) gives an expansion according to the law 

R = constV3/S(g/v)VStll s. (15) 

for an axisymmetric drop of volume V. 

When ~=/= 0, Eq. (13) contains spatial derivatives of higher order, and additional bound- 
ary conditions, for example, the value of the wetting angle, are necessary for its solution. 

In the simplest case of a two-dimensional (a/~y = 0) motionless drop of volume V it is 
easy to obtain from Eq. (13) the shape h(x) and length 2d of the drop analytically: 

h(x)  = ~(ch ad - -  ch ax)/(a sh ad), 

where a = pg/~7~ is the capillary constant, B is the tangent of the wetting angle, and the 
quantity d is determined from the equation (i + Va2/2B) tanh ad = ad, which is in complete 
agreement with the known result from hydrostatics [12]. 
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